∵AB=AC AD⊥BC
∴BD=CD=1/2BC
∵CE⊥AB
∴∠B+∠BDE=∠BDE+ADE=90
∴∠B=∠ADE
而∠BED=∠ADB=90
∠B=∠B
∴△BDE∽△BAD
∴AD∶BD=DE:BE
∵DE=2DF,BD=1/2BC
∴AD:1/2BC=2DF:BE
∴2AD:BC=2DF:BE
∴AD:BC=DF:BE
而∠B=∠ADE
∴△ADF∽△CBE
∴∠BCE=∠DAF
设AD与CE交O
∠AOH=∠COD
∴∠AHO=∠CDA=90
即AF⊥CE
∵AB=AC AD⊥BC
∴BD=CD=1/2BC
∵CE⊥AB
∴∠B+∠BDE=∠BDE+ADE=90
∴∠B=∠ADE
而∠BED=∠ADB=90
∠B=∠B
∴△BDE∽△BAD
∴AD∶BD=DE:BE
∵DE=2DF,BD=1/2BC
∴AD:1/2BC=2DF:BE
∴2AD:BC=2DF:BE
∴AD:BC=DF:BE
而∠B=∠ADE
∴△ADF∽△CBE
∴∠BCE=∠DAF
设AD与CE交O
∠AOH=∠COD
∴∠AHO=∠CDA=90
即AF⊥CE