不等式两边同除(x-a),两边就都形成了题目中给定的条件不等式,此题得证
微分中值定理的一道题设f(x)和g(x)都是可导函数,且|f'(x)|
1个回答
相关问题
-
设函数f(x)和g(x)均可导,且f'(x)
-
设f(x)、g(x)是R上的可导函数,f'(x)、g'(x)分别为f(x),g(x)的导函数,且f'(x)g(x)+f(
-
微分中值定理的一道题函数f在a,b闭区间连续开区间二阶可导,存在c属于开区间a,b,使得(f(x)-f(a))/(x-a
-
设f(x)、g(x)是R上的可导函数,f′(x),g′(x)分别为f(x)、g(x)的导函数,且满足f′(x)g(x)+
-
与中值定理有关的一道证明题设f(x),g(x)在(a,b)内可导,且f'(x)g(x)≠g(x)f'(x)求证f(x)在
-
关于微分中值定理的一道题.函数f(x)定义在闭区间[a,b]上,且在(a,b)上可导.求证:对于任意正整数n,存在实数ξ
-
设f(x)与g(x)可导,f^2(x)+g^2 (x)≠0,求证函数y=根号下f^2(x)+g^2 (x)可导
-
微分中值定理的题目函数f(x)在(0,1)上连续且可导,且f(0)=0,f(1)=1/2证:存在两点ξ1、ξ2属于(0,
-
设g(x)在x=0处二阶可导,且g(0)=0,f(x)=g(x),x≠0,f(x)=a,x=0;确定试a值,使函数f(x
-
(2005•东城区一模)设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)-f(x)g′(x