a1+s1=1.得a1=1/2.
因sn=n-an.得s(n+1)=n+1-a(n+1).
a(n+1)=s(n+1)-sn=1+an-a(n+1).
a(n+1)=(1+an)/2.
c(n+1)=a(n+1)-1=(an-1)/2.
q=c(n+1)/cn=1/2.
c1=a1-1=-1/2.
所以cn是首项为-1/2,公比为1/2的等比数列
a1+s1=1.得a1=1/2.
因sn=n-an.得s(n+1)=n+1-a(n+1).
a(n+1)=s(n+1)-sn=1+an-a(n+1).
a(n+1)=(1+an)/2.
c(n+1)=a(n+1)-1=(an-1)/2.
q=c(n+1)/cn=1/2.
c1=a1-1=-1/2.
所以cn是首项为-1/2,公比为1/2的等比数列