若1+tanx|1-tanx=2008,则1|cos2x+tan2x=?

1个回答

  • 1/cos2x+tan2x=(1+sin2x)/cos2x

    =(sin²x+cos²x+2sinxcosx)/(cos²x-sin²x)

    =(sinx+cosx)²/[(cosx+sinx)(cosx-sinx)]

    =(sinx+cosx)/(cosx-sinx)

    =(tanx+1)/(1-tanx)

    =2008

    sinx+siny=sin225°=sin(180°+45°)=-sin45°=-√2/2

    cosx+cosy=cos225°=cos(180°+45°)=-cos45°=-√2/2,

    那么(sinx+siny)²=sin²x+2sinxsiny+sin²y=1/2

    (cosx+cosy)²=cos²x+2cosxcosy+cos²y=1/2

    两式相加,得:1+1+2(cosxcosy+sinxsiny)=1

    那么2+2cos(x-y)=1

    所以cos(x-y)=-1/2