设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导
2个回答
lim(x→0)f(x)/x存在
说明x→0,lim f(x)=f(0)=0
所以
lim f(x)/x=lim [f(x)-f(0)]/x=f'(0)
所以在x=0处可导
相关问题
设f(x)在x=0处连续且lim(x趋于0)[f(x)+f(-x)]/x存在,证明f(0)=0
设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1 ,证明函数f(x)在x=0处可导且取得极小值.
设fx在x=0处连续,且limf(x)/x存在,证明f(x)在x=0处可导
f(x)在x=0处可导,且f(0)=0,则lim[f(x)/2x]=?x趋于0
设f(x)在x=0处可导,且f(0)=0,则limx趋于0f(x)/x=?
设f(x)可导,且f(0)=0,证明F(X)=f(x)(1+/SINX/)在x=0处可导
设函数f(x)在x=0处可导,且f(0)=0,则lim(△x→0)[f(5x)]/x=?
lim(x->x0)f(x)/x极限存在,且f(x)在x0处连续
lim(x->x0)f(x)/x极限存在,且f(x)在x0处连续
f(x)连续,|f(x)|在x0处可导,则f(x)在x0出可导.如何证明?