这题怎么解:(2x-1)^3=a+bx+cx^2+dx^3
1个回答
(2x-1)^3
=(2x-1)^2*(2x-1)
=(4x^2-4x+1)(2x-1)
=8x^3-12x^2+6x-1
a=-1
b=6
c=-12
d=8
a+b+c+d=1
a=-1
a+c=-13
相关问题
(1-2X)^5=a+ bX+ cX^2+ dX^3+ eX^4 +fX^5,求c
(2x-1)^5=ax^5+bx^4+cx^3+dx^2+ex+f
设(2x-1)5=ax5+bx4+cx3+dx2+ex+f,
若(2x-1)^5=ax^5 + bx^4 + cx^3 + dx^2 + ex + f
设(2x-1)5=ax5+bx4+cx3+dx2+ex+f,
(x-3)^5=ax^5+bx^4+cx^3+dx^2+ex+f
已知关于x的两个多项式M=ax^3+bx^2+cx+d,N=dx^3-cx^2+bx-a,且两者之差M-N=x^3+2x
已知:ax^4+bx^3+cx^2+dx+e=(x-2)^4
f(x)=1/3ax^3+bx^2+cx(a
f(x)=ax^4+bx^3+cx^2+dx+e为偶函数