把an移到右边,a(n+1)=(nan)/(n+1)
用n-1代入上式的n处,an=[(n-1)/n]*a(n-1)
=[(n-1)/n]*[(n-2)/(n-1)]*[(n-3)/(n-2)]*.*[(2-1)/2]*a(2-1)
=[(n-1)/n]*[(n-2)/(n-1)]*[(n-3)/(n-2)]*.*1/2*a1
=1/n*a1=a1/n=2/n
故nan=2
{nan}是各项均等于2的常数数列.
把an移到右边,a(n+1)=(nan)/(n+1)
用n-1代入上式的n处,an=[(n-1)/n]*a(n-1)
=[(n-1)/n]*[(n-2)/(n-1)]*[(n-3)/(n-2)]*.*[(2-1)/2]*a(2-1)
=[(n-1)/n]*[(n-2)/(n-1)]*[(n-3)/(n-2)]*.*1/2*a1
=1/n*a1=a1/n=2/n
故nan=2
{nan}是各项均等于2的常数数列.