(1)∵BC与圆相切,
∴∠PFD=∠PDC.
∵BF、BD分别于圆相切,
∴∠BFD=∠BDF=45°.
∴∠FPD=45°.
∵PC⊥PF,
∴∠FPD=∠DPC.
∴△PFD ∽ △PDC.
(2)∵AE、AF与圆相切,
∴∠AFP=∠ADF,∠AEP=∠ADE,
∵∠FAD=∠PAF,∠EAP=∠DAE,
∴△AFP ∽ △ADF,△AEP ∽ △ADE,
∴
AF
AD =
PF
FD 、
AE
AD =
PE
ED 且AE=AF,
∴
PF
FD =
PE
ED .
∵△PFD ∽ △PDC,
∴
PF
FD =
PD
DC .
∴
EP
DE =
PD
DC .