(1)连接OA、OB、OC
∵⊙O为△ABC的内切圆
∴OE⊥AB,OD⊥AC,OF⊥BC
∴S△AOB=AB×OE÷2=rc/2
S△AOC=AC×OD÷2=rb/2
S△BOC=BC×OF÷2=ra/2
∴S△ABC=S△AOB+S△AOC+S△BOC
=r(a+b+c)/2
(2)由①得r=2S△ABC/(a+b+c)
=2×5÷10
=1(cm)
答:…………
(1)连接OA、OB、OC
∵⊙O为△ABC的内切圆
∴OE⊥AB,OD⊥AC,OF⊥BC
∴S△AOB=AB×OE÷2=rc/2
S△AOC=AC×OD÷2=rb/2
S△BOC=BC×OF÷2=ra/2
∴S△ABC=S△AOB+S△AOC+S△BOC
=r(a+b+c)/2
(2)由①得r=2S△ABC/(a+b+c)
=2×5÷10
=1(cm)
答:…………