证明:(1)∵∠ACE=∠ADF=90°∴∠AEC+∠CAE=∠AFD+∠BAE∵∠CAE=∠BAE∴∠AEC=∠AFD∵∠AFD=∠CFE∴∠AEC=∠CFE∴CE=CF
(2)根据角平分线定理,在△ABC中BE:CE=AB:AC
在△ACD中,CF:DF=AC:AD.
∵∠ACB=∠ADC=90°,∠CAB=∠DAC∴△BAC∽△CAD∴AB:AC=AC:AD
∴BE:CE=CF:DF
∵BE=2CD, CD=CF+DF ,CE=CF
∴2(CF+DF):CF=CF:DF
整理,2CF*DF+DF*DF=CF*CF
DF²+2CF*DF+CF²=2CF²
(DF+CF)²=2CF²
∴DF=(根号2-1)/2*CF