依题意,得 短轴一个端点到右焦点的距离为√3,从而 a=√3,
又 e=3分之√6
从而 c/a=(√6)/3,c=√2得出 b=1
从而椭圆C为 x^2/3+y^2=1
把直线看做以原点为圆心,半径为√3/2的圆的切线,作平行于X轴的切线交椭圆于A,B
此时AB最长
设A,B的坐标为A(x1.y1) B(x2,y2)
则y1=y2=坐标原点O到直线L的距离
那么 y=√3/2
代入 x^2/3+y^2=1
得 x=±√3/2
因而AB最大长度=|2*x|=√3
∴三角形ABO面积的最大值=1/2*坐标原点O到直线L的距离*AB长度
=1/2*√3*√3/2=3/4