解题思路:已知∠A,就可以求出∠ABC与∠ACB的和,进而可以求出∠1与∠4的和.在△OBC中利用三角形内角和定理就可以求出∠O的大小.
∵BO、CO分别平分∠ABC和∠ACB,
∴∠1=∠2,∠3=∠4.
(1)∵∠A=60°,
∴∠1+∠2+∠3+∠4=120°,
∴∠1+∠4=60°,
∴∠O=180°-60°=120°.
(2)若∠A=100°,
∴∠1+∠2+∠3+∠4=80°,
∴∠1+∠4=40°,
∴∠O=140°.
若∠A=120°,
∴∠1+∠2+∠3+∠4=60°,
∴∠1+∠4=30°,
∴∠O=150°.
(3)规律是∠O=90°+0.5∠A,当∠A的度数发生变化后,结论仍成立.
点评:
本题考点: 三角形内角和定理.
考点点评: 第一,第二问是解决第三问发现规律的基础,因而总结前两问中的基本解题思路是解题的关键.