P₁(x₁,y₁),P(x₂,y₂),M(a,b)
y²=4x,y₁²= 4x₁
y²=4x,y₂²= 4x₂
(x₁- a)² + (y₁- b)² = (x₂- a)² + (y₂- b)²
化简得:
(1/16)(y₁²+ y₂²)(y₁+ y₂)+(1 - a/2)(y₁+ y₂) - 2b = 0
(y₁- y₂)/(x₁- x₂) = a/(3 - b)
(y₁- y₂)/¼(y₁²- y₂²) = a/(3 - b)
∴y₁+ y₂= (12 - 4b)/a
代入上式得:
(1/16)(y₁²+ y₂²)(12 - 4b)/a+(1 - a/2)(12 - 4b)/a - 2b = 0
化简得:
b = 6/(2 + a)
将a,b换成x,y 得到轨迹方程:
y = 6/(x + 2)
¹²³⁴√ⁿ₁₂₃₄