解题思路:(Ⅰ)由a1=0,an+1=an+2n可求得a2、a3、a4;
(Ⅱ)由于an-an-1=2(n-1),(n≥2),可采用累加法得:an=(an-an-1)+(an-1-an-2)+…(a2-a1)+a1,从而可求得an.
(Ⅲ)由(Ⅱ)可求得an=n2-n,于是
b
n
=(
a
n
n
+1)•
2
n
=n•2n,其前n项和Sn=1×2+2×22+3×23+…+n×2n,①
2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,②将①②两个式子利用错位相减法即可求得数列{bn}的前n项和.
(Ⅰ)由已知得a2=a1+2=2,a3=a2+4=6,a4=a3+6=12.
(Ⅱ)由已知得an+1-an=2n.所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2(n−1)+2(n−2)+…+2=
(2+2(n−1))•n
2=n2−n,
(Ⅲ)∵an=n2-n,
∴bn=(
an
n+1)•2n=n•2n,
∴数列{bn}前n项和Sn=1×2+2×22+3×23+…+n×2n,①
2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,②
①-②得-Sn=2+22+23+…2n-n×2n+1
∴−Sn=
2−2n+1
1−2−n×2n+1,
∴Sn=2+(n-1)•2n+1.
点评:
本题考点: 数列的求和;数列的函数特性.
考点点评: 本题考查数列的求和,着重考查数列的“累加法”求和与“错位相减法”求和,属于中档题.