对数函数问题log18 9 = a log18 5 =b 则log36 45= 用a b表示?y=log2 (x^2-a

1个回答

  • log18 (9 ) = a,

    即log18 (18/2) = a,

    1- log18 (2) = a,log18 (2) =1-a.

    log36( 45)= log18 (45)/ log18 (36)

    =[ log18 (9 )+ log18 (5)]/[ log18 (18×2)]

    =[ log18 (9 )+ log18 (5)]/ [ log18 (18)+ log18 (2)]

    =(a+b)/(1+1-a)= (a+b)/(2-a)

    y=log2 (x^2-ax-a)由y=log2 (t)与t= x^2-ax-a复合而成,

    y=log2 (t)在定义域上单调递增,

    所以t= x^2-ax-a在(-√3,+∞)上递增,

    该二次函数的对称轴为x=a/2,则a/2≤-√3,a≤-2√3.

    并且函数t= x^2-ax-a作为真数,t的最小值必须大于0,

    函数t的最小值是x=-√3时取到,3+√3a-a>0,a>(-3-3√3)/2.

    综上可知:(-3-3√3)/2