(1)
A(2,0) B(0,2) C(1,0)
∵OC=CA=1
∴直线y=kx+b过B点时,S△OCB=1/2OC*OB=1/2CA*OB=S△CAB
则 2=k*0+b,0=k+b;b=2,k=-2
(2)
S△OAB=1/2*OA*OB=2
设两直线的交点为P(x0,y0),或与y轴的交点为P(0,y0)
则S△CPA=1/2|CA|*y0=1/2y0=1/(1+5) S△OAB=1/3
y0=2/3
代入y=-x+2 得:x0=4/3
将P、C点坐标代入y=kx+b得:
0=k+b
2/3=4/3k+b
k=2,b=-2
或:
0=k+b
2/3=k*0+b
k=-2/3,b=2/3