连接AC,
∵AB⊥BC于B,BC=4,AB=3,
∴AC=
AB 2 + BC 2 =
4 2 + 3 2 =5;
在△ACD中,∵CD=12,AD=13,AC=5,5 2+12 2=13 2,即AC 2+CD 2=AD 2,
∴△ACD是直角三角形,
∴S 四边形ABCD=S △ACD+S △ABC,
=
1
2 AB?BC+
1
2 CD?AC,
=
1
2 ×3×4+
1
2 ×12×5,
=6+30,
=36.
故答案为:36.
连接AC,
∵AB⊥BC于B,BC=4,AB=3,
∴AC=
AB 2 + BC 2 =
4 2 + 3 2 =5;
在△ACD中,∵CD=12,AD=13,AC=5,5 2+12 2=13 2,即AC 2+CD 2=AD 2,
∴△ACD是直角三角形,
∴S 四边形ABCD=S △ACD+S △ABC,
=
1
2 AB?BC+
1
2 CD?AC,
=
1
2 ×3×4+
1
2 ×12×5,
=6+30,
=36.
故答案为:36.