x,a1,a2,a3,y成等差数列,x,b1,b2,y成等比数列
b1×b2 =xy
(a1+a3)^2=(x+y)^2
(a1+a3)^2/b1×b2
=(x+y)^2/(xy)
(x+y)^2-4xy=(x-y)^2≥0
所以(x+y)^2≥4xy
所以(x+y)^2/(xy)≥4
所以(a1+a3)^2/b1×b2 的取值范围是[4,+∞)
x,a1,a2,a3,y成等差数列,x,b1,b2,y成等比数列
b1×b2 =xy
(a1+a3)^2=(x+y)^2
(a1+a3)^2/b1×b2
=(x+y)^2/(xy)
(x+y)^2-4xy=(x-y)^2≥0
所以(x+y)^2≥4xy
所以(x+y)^2/(xy)≥4
所以(a1+a3)^2/b1×b2 的取值范围是[4,+∞)