方法1:
n³+5n=n³-n+6n=(n-1)n(n+1)+6n
(n-1)n(n+1)为三个连续自然数,其中必有一个能被3整除,也必有一个是偶数,故(n-1)n(n+1)能被6整除,因而n³+5n能被6整除.
方法2:采用数学归纳法:
n=1时,n³+5n=6,结论成立
假设n=k时结论成立,k³+5k能被6整除
n=k+1时,(k+1)³+5(k+1)=k³+3k²+3k+1+5k+5=k³+5k+3k²+3k+6
=(k³+5k)+3k(k+1)+6
已知(k³+5k)能被6整除,k和(k+1)中必有一个偶数,故3k(k+1)也能被6整除,于是(k³+5k)+3k(k+1)+6能被6整除,结论也成立.