已知函数f(x)=2cos^2+2根号3sinxcosx

2个回答

  • (1)f(x)=2cos²x+2√3sinxcosx

    =2cos²x+√3sin2x

    =cos2x+1+√3sin2x

    =2sin(2x+π/6)+1

    ∵x∈[-π/6,π/3].∴2x+π/6∈[-π/6,π]

    ∴f(x)∈[0,3]

    (2)∵cos(A-C)-cos(A+C),

    =cosAcosC+sinAsinC-(cosAcosC-sinAsinC)

    =2sinAsinC

    =2sinB

    ∴sinAsinC=sinB

    f(C)=2sin(2C+π/6)+1=2

    所以sin(2C+π/6)=1/2

    即2C+π/6=π/6或5π/6

    当2C+π/6=π/6,C=0

    不符舍去

    所以2C+π/6=5π/6,C=π/3

    sinAsinC=sinB=sin(A+C)

    即(√3sinA)/2=sin(A+π/3)=(sinA)/2+(√3cosA)/2

    (√3-1)sinA=√3cosA

    tanA=√3/(√3-1)= 3-√3