(1)对于数列{a n},当n=1时, a 1 = S 1 =
3
2 ( a 1 -1) ,解得a 1=3.
当n≥2时,a n=S n-S n-1=
3
2 ( a n -1)-
3
2 ( a n-1 -1) ,化为a n=3a n-1.
∴数列{a n}是首项为3,公比为3的等比数列,
∴ a n =3× 3 n-1 = 3 n .
对于数列{b n}满足b n=
1
4 b n-1 -
3
4 (n≥2),b 1=3.
可得 b n +1=
1
4 ( b n-1 +1) .
∴数列{b n+1}是以b 1+1=4为首项,
1
4 为公比的等比数列.
∴ b n +1=4×(
1
4 ) n-1 ,化为 b n = 4 2-n -1 .
(2) c n = 3 n •lo
g ( 4 2-n -1+1)2 =3 n(4-2n)
∴ T n =2× 3 1 +0+(-2)• 3 3 + …+(4-2n)•3 n.
3 T n =2× 3 2 +0+(-2)× 3 4 + …+(6-2n)•3 n+(4-2n)•3 n+1.
∴ -2 T n =6+(-2)• 3 2 +(-2)• 3 3 +…+(-2)•3 n-(4-2n)•3 n+1
=6-2×
3 2 ( 3 n-1 -1)
3-1 -(4-2n)•3 n+1.
∴ T n =-
15
2 +(
5
2 -n)• 3 n+1 .