数列{a n }的前n项和为S n ,且S n = 3 2 (a n -l),数列{b n }满足b n = 1 4 b

1个回答

  • (1)对于数列{a n},当n=1时, a 1 = S 1 =

    3

    2 ( a 1 -1) ,解得a 1=3.

    当n≥2时,a n=S n-S n-1=

    3

    2 ( a n -1)-

    3

    2 ( a n-1 -1) ,化为a n=3a n-1

    ∴数列{a n}是首项为3,公比为3的等比数列,

    ∴ a n =3× 3 n-1 = 3 n .

    对于数列{b n}满足b n=

    1

    4 b n-1 -

    3

    4 (n≥2),b 1=3.

    可得 b n +1=

    1

    4 ( b n-1 +1) .

    ∴数列{b n+1}是以b 1+1=4为首项,

    1

    4 为公比的等比数列.

    ∴ b n +1=4×(

    1

    4 ) n-1 ,化为 b n = 4 2-n -1 .

    (2) c n = 3 n •lo

    g ( 4 2-n -1+1)2 =3 n(4-2n)

    ∴ T n =2× 3 1 +0+(-2)• 3 3 + …+(4-2n)•3 n

    3 T n =2× 3 2 +0+(-2)× 3 4 + …+(6-2n)•3 n+(4-2n)•3 n+1

    ∴ -2 T n =6+(-2)• 3 2 +(-2)• 3 3 +…+(-2)•3 n-(4-2n)•3 n+1

    =6-2×

    3 2 ( 3 n-1 -1)

    3-1 -(4-2n)•3 n+1

    ∴ T n =-

    15

    2 +(

    5

    2 -n)• 3 n+1 .