用数学归纳法:
(1)当n=2时不等式左边等于4/3,右边等于(根号5)/2,左边>右边,故此时不等式成立;
(2)假设当n=k(k∈N+ ,k>1)时不等式成立,则有:
(1+1/3)(1+1/5)(1+1/7)…[1+1/(2k-1)]>√(2k+1)/2
则当n=k+1时,有:
(1+1/3)(1+1/5)(1+1/7)…[1+1/(2k-1)][1+1/(2k+1)]>[√(2k+1)/2][1+1/(2k+1)]=[2(k+1)*√(2k+1)]/[2(2k+1)]
因为2k+1>0
所以8k^3+20k^2+16k+4>8k^3+20k^2+14k+3
(4k^2+8k+4)(2k+1)>(4k^2+4k+1)(2k+3)
√[(4k^2+8k+4)(2k+1)]>√[(4k^2+4k+1)(2k+3)]
2(k+1)√(2k+1)>(2k+1)√(2k+3)
[2(k+1)√(2k+1)]/[2(2k+1)]>[(2k+1)√(2k+3)]/[2(2k+1)]=[√(2k+3)]/2
所以
(1+1/3)(1+1/5)(1+1/7)…[1+1/(2k-1)][1+1/(2k+1)]>[√(2k+1)/2][1+1/(2k+1)]=[2(k+1)*√(2k+1)]/[2(2k+1)]>[√(2k+3)]/2
即当n=k+1时不等式也成立
综上:当n∈N+ ,n>1时不等式
(1+1/3)(1+1/5)(1+1/7)…[1+1/(2n-1)]>√(2n+1)/2
成立