已知n∈N+ ,n>1 ,求证 〔1+1/3〕〔1+1/5〕〔1+1/7〕……〔1+1/〔2n-1〕〕>√〔2n+1〕/

1个回答

  • 用数学归纳法:

    (1)当n=2时不等式左边等于4/3,右边等于(根号5)/2,左边>右边,故此时不等式成立;

    (2)假设当n=k(k∈N+ ,k>1)时不等式成立,则有:

    (1+1/3)(1+1/5)(1+1/7)…[1+1/(2k-1)]>√(2k+1)/2

    则当n=k+1时,有:

    (1+1/3)(1+1/5)(1+1/7)…[1+1/(2k-1)][1+1/(2k+1)]>[√(2k+1)/2][1+1/(2k+1)]=[2(k+1)*√(2k+1)]/[2(2k+1)]

    因为2k+1>0

    所以8k^3+20k^2+16k+4>8k^3+20k^2+14k+3

    (4k^2+8k+4)(2k+1)>(4k^2+4k+1)(2k+3)

    √[(4k^2+8k+4)(2k+1)]>√[(4k^2+4k+1)(2k+3)]

    2(k+1)√(2k+1)>(2k+1)√(2k+3)

    [2(k+1)√(2k+1)]/[2(2k+1)]>[(2k+1)√(2k+3)]/[2(2k+1)]=[√(2k+3)]/2

    所以

    (1+1/3)(1+1/5)(1+1/7)…[1+1/(2k-1)][1+1/(2k+1)]>[√(2k+1)/2][1+1/(2k+1)]=[2(k+1)*√(2k+1)]/[2(2k+1)]>[√(2k+3)]/2

    即当n=k+1时不等式也成立

    综上:当n∈N+ ,n>1时不等式

    (1+1/3)(1+1/5)(1+1/7)…[1+1/(2n-1)]>√(2n+1)/2

    成立