设这两条直线的斜率为k
分成k存在与不存在
写出两条直线的方程,分别是y=k(x-1)及y-5=kx
即kx-y-k=0及kx-y+5=0
他们的距离(-k-5)/根号下(k^2+1)
也就是(-k-5)/根号下(k^2+1)=5
解得:k=0或k=5/12
所以两直线的方程:y=0及y=5
或5x-12y-5=0及5x-12y+60=0
设这两条直线的斜率为k
分成k存在与不存在
写出两条直线的方程,分别是y=k(x-1)及y-5=kx
即kx-y-k=0及kx-y+5=0
他们的距离(-k-5)/根号下(k^2+1)
也就是(-k-5)/根号下(k^2+1)=5
解得:k=0或k=5/12
所以两直线的方程:y=0及y=5
或5x-12y-5=0及5x-12y+60=0