an = a1 + (n-1)*d a = a1 + 2nd bn = b1 * q^(n-1) b = b1 * q^(2n) a1 + 2nd = a1 * q^(2n) 2(a1 + nd) = a1 * [1 + q^(2n)] a = a1 + nd = a1 * [1 + q^(2n)]/2 b = a1 * q^n a - b = (a1 /2) * [q^(2n) - 2 q^n + 1] = (a1 /2) * (q^n -1)^2 所以a 大于
设{an}等差数列,{bn}是正项等比数列,且a1=b1,a(2n+1)=b(2n+1),则a(n+1)与b(n+1)的
1个回答
相关问题
-
1.若{an}为正项等差数列,{bn}为正项等比数列,且a1=b1,a2n-1=b2n-1,公差d>0 则 an 与 b
-
两个正项数列{an}{bn},an,bn^2,a(n+1)是等差数列,bn^2,a(n+1),b(n+1)^2是等比数列
-
正项数列an成等差数列,bn等比数列,若a1=b1,a(2n-1)=b(2n-1),an与bn大小
-
an为等差数列,bn为等比数列,若a1=b1,a(2n+1)=b(2n+1),比较a(n+1),b(n+1)
-
已知等差数列{an}和等比数列{bn}满足:a1=b1=1,a2=b2≠1,a5=b3,设cn=an+bn(n∈N*).
-
已知等差数列{an}和等比数列{bn},且a1=b1,a2=b2,a1≠a2,an>0,n∈N*.
-
等差数列An和等比数列Bn中a1=b1>0,a2n+1=b2n+1>0则
-
(2013•杭州一模)设在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,
-
an为等差数列,bn为等比数列,若a1=b1,a(2n+1)=b(2n+1),比较a(n+1),b(n+1)的关系
-
设数列{an}的前n项和Sn=n²(n的平方)+n,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1,求数列{