一、小学数学几何形体周长
面积
体积计算公式
长方形的周长
=
(长
+
宽)
×2
C=(a+b)
×2
正方形的周长
=
边长
×4
C=4a
长方形的面积
=
长
×
宽
S=ab
正方形的面积
=
边长
×
边长
S=a.a=
a
三角形的面积
=
底
×
高
÷2
S=ah
÷
2
平行四边形的面积
=
底
×
高
S=ah
梯形的面积
=
(上底
+
下底)
×
高
÷
2
S=
(
a
+
b
)
h
÷
2
直径
=
半径
×2
d=2r
半径
=
直径
÷2
r=
d
÷
2
圆的周长
=
圆周率
×
直径
=
圆周率
×
半径
×2
c=
πd
=2
πr
圆的面积
=
圆周率
×
半径
×
半径
三角形的面积=底
×
高
÷2
.
公式
S=
a
×h÷
2
正方形的面积=边长
×
边长
公式
S=
a
×a
长方形的面积=长
×
宽
公式
S=
a
×b
平行四边形的面积=底
×
高
公式
S=
a
×h
梯形的面积=(上底
+
下底)
×
高
÷
2
公式
S=(a+b)h
÷2
内角和:三角形的内角和=
180
度.
长方体的体积=长
×
宽
×
高
公式:
V=abh
长方体(或正方体)的体积=底面积
×
高
公式:
V=abh
正方体的体积=棱长
×
棱长
×
棱长
公式:
V=aaa
圆的周长=直径
×
π
公式:
L
=
πd
=
2
πr
圆的面积=半径
×
半径
×
π
公式:
S
=
π
r2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高.公式:
S=ch=
πdh
=
2
πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积.
公式:
S=ch+2s=ch+2
πr2
圆柱的体积:圆柱的体积等于底面积乘高.公式:
V=Sh
圆锥的体积=
1/3
底面
×
积高.公式:
V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,
然后再加减.
分数的乘法则:用分子的积做分子,用分母的积做分母.
分数的除法则:除以一个数等于乘以这个数的倒数.
二、单位换算
(
1
)
1
公里=
1
千米
1
千米=
1000
米
1
米=
10
分米
1
分米=
10
厘米
1
厘米=
10
毫米
(
2
)
1
平方米=
100
平方分米
1
平方分米=
100
平方厘米
1
平方厘米=
100
平方毫米
(
3
)
1
立方米=
1000
立方分米
1
立方分米=
1000
立方厘米
1
立方厘米=
1000
立方毫米
(
4
)
1
吨=
1000
千克
1
千克
=
1000
克
=
1
公斤
=
2
市斤
(
5
)
1
公顷=
10000
平方米
1
亩=
666.666
平方米
(
6
)
1
升=
1
立方分米=
1000
毫升
1
毫升=
1
立方厘米
(
7
)
1
元
=10
角
1
角
=10
分
1
元
=100
分
(
8
)
1
世纪
=100
年
1
年
=12
月
大月
(31
天
)
有
:135781012
月
小月
(30
天
)
的有
:46911
月
平年
2
月
28
天
,
闰年
2
月
29
天
平年全年
365
天
,
闰年全年
366
天
1
日
=24
小时
1
时
=60
分
1
分
=60
秒
1
时
=3600
秒
三、数量关系计算公式方面
1
、每份数
×
份数=总数
总数
÷
每份数=份数总数
÷
份数=每份数
2
、
1
倍数
×
倍数=几倍数
几倍数
÷
1
倍数=倍数几倍数
÷
倍数=
1
倍数
3
、速度
×
时间=路程
路程
÷
速度=时间
路程
÷
时间=速度
4
、单价
×
数量=总价
总价
÷
单价=数量
总价
÷
数量=单价
2
5
、工作效率
×
工作时间=工作总量
工作总量
÷
工作效率=工作时间工作总量
÷
工作时间=工作效率
6
、加数+加数=和
和-一个加数=另一个加数
7
、被减数-减数=差
被减数-差=减数
差+减数=被减数
8
、因数
×
因数=积
积
÷
一个因数=另一个因数
9
、被除数
÷
除数=商
被除数
÷
商=除数
商
×
除数=被除数
四、算术方面
1
.加法交换律:两数相加交换加数的位置,和不变.
2
.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变.
3
.乘法交换律:两数相乘,交换因数的位置,积不变.
4
.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的
积不变.
5
.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结
果不变.如:
(
2+4
)
×5
=
2
×5+4×5
.
6
.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.
0
除以任何不是
0
的数都得
0
.
7
.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘
以(或除以)一个相同的数,等式仍然成立.
8
.方程式:含有未知数的等式叫方程式.
9
.一元一次方程式:含有一个未知数,并且未知数的次
数是一次的等式叫做一元一次方程式.
学会一元一次方程式的例法及计算.即例出代有
χ
的算式并计算.
10
.分数:把单位
“1”
平均分成若干份,表示这样的一份或几分的数,叫做分数.
11
.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通
分,然后再加减.
12
.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分
然后再比较;若分子相同,分母大的反而小.
13
.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
14
.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.
15
.分数除以整数(
0
除外)
,等于分数乘以这个整数的倒数.
16
.真分数:分子比分母小的分数叫做真分数.
17
.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于
1
.
18
.带分数:把假分数写成整数和真分数的形式,叫做带分数.
19
.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(
0
除外)
,分数的大小不变.
20
.一个数除以分数,等于这个数乘以分数的倒数.
21
.甲数除以乙数(
0
除外)
,等于甲数乘以乙数的倒数.
五、特殊问题
和差问题的公式
(
和+差
)
÷
2
=大数
(
和-差
)
÷
2
=小数
和倍问题
和÷
(
倍数-
1)
=小数
小数×倍数=大数
(
或者
和-小数=大数
)
差倍问题
差÷
(
倍数-
1)
=小数
小数×倍数=大数
(
或
小数+差=大数
)
植树问题
3
1
非封闭线路上的植树问题主要可分为以下三种情形
:
(
1
)如果在非封闭线路的两端都要植树
,
那么
:
株数=段数+
1
=全长÷株距-
1
全长=株距×
(
株数-
1)
株距=全长÷
(
株数-
1)
(
2
)如果在非封闭线路的一端要植树
,
另一端不要植树
,
那么
:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
(
3
)如果在非封闭线路的两端都不要植树
,
那么
:
株数=段数-
1
=全长÷株距-
1
全长=株距×
(
株数+
1)
株距=全长÷
(
株数+
1)
2
封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(
盈+亏
)
÷两次分配量之差=参加分配的份数
(
大盈-小盈
)
÷两次分配量之差=参加分配的份数
(
大亏-小亏
)
÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
(
1
)一般公式:
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=
(
顺流速度+逆流速度
)
÷
2
水流速度=
(
顺流速度-逆流速度
)
÷
2
(
2
)两船相向航行的公式:
甲船顺水速度
+
乙船逆水速度
=
甲船静水速度
+
乙船静水速度
(
3
)两船同向航行的公式:
后(前)船静水速度
-
前(后)船静水速度
=
两船距离缩小(拉大)速度
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×
100%
=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×
100%
=
(
售出价÷成本-
1)
×
100%
涨跌金额=本金×涨跌百分比
4
折扣=实际售价÷原售价×
100%(
折扣<
1)
利息=本金×利率×时间
税后利息=本金×利率×时间×
(1
-
5%)
工程问题
(
1
)一般公式:
工作效率×工作时间
=
工作总量
工作总量÷工作时间
=
工作效率
工作总量÷工作效率
=
工作时间
(
2
)用假设工作总量为“
1
”的方法解工程问题的公式:
1
÷工作时间
=
单位时间内完成工作总量的几分之几
1
÷单位时间能完成的几分之几
=
工作时间