log2[x+1]≤log4[3x+1]
定义:x+1>0 x>-1
3x+1>0 x>-1/3
log2[x+1]≤(1/2)log2[3x+1]
2log2[x+1]≤log2[3x+1]
log2[x+1]²≤log2[3x+1]
(x+1)²≤3x+1
x²+2x+1≤3x+1
x²-x≤0
x(x-1)≤0
得
0≤x≤1
log2[x+1]≤log4[3x+1]
定义:x+1>0 x>-1
3x+1>0 x>-1/3
log2[x+1]≤(1/2)log2[3x+1]
2log2[x+1]≤log2[3x+1]
log2[x+1]²≤log2[3x+1]
(x+1)²≤3x+1
x²+2x+1≤3x+1
x²-x≤0
x(x-1)≤0
得
0≤x≤1