1+2+3+……+n=(1+n)n/2
1/(1+2+3+……+n)= 2/(1+n)n=2[1/n - 1/(n+1)]
所以原式=2( 1 - 1/2 + 1/2 - 1/3 + 1/3 - …… - 1/2012 + 1/2012 - 1/2013 )=4024/2013
1+2+3+……+n=(1+n)n/2
1/(1+2+3+……+n)= 2/(1+n)n=2[1/n - 1/(n+1)]
所以原式=2( 1 - 1/2 + 1/2 - 1/3 + 1/3 - …… - 1/2012 + 1/2012 - 1/2013 )=4024/2013