设数列{Xn}是正数列,数列Bn=Xn+1\Xn在n趋于无穷大是等于1/2.试证明{Xn}从某项起单调减少.
1个回答
由于Bn收敛于1/2N时
Bn=x{n+1}/xn
相关问题
设X1=1,Xn=1+(Xn-1/(1+Xn-1)),n=1,2,…,试证明数列{Xn}收敛,并求其极限
怎么证明一个数列是柯西数列?如果Xn∈R并且d(Xn,Xn+1)≤d(Xn-1,Xn)/2.证明Xn是柯西
设X1=10,Xn+1=(6+Xn)^(1/2),n=1,2,...证明数列{Xn}极限存在
请教一道数列极限的证明题设a>0,已知数列(Xn)定义如下:Xo>0,Xn+1=(1/2)*(Xn+(a/Xn)) (n
函数f(x)单调有界,Xn是数列,则若Xn单调那么数列{f(Xn)}收敛.如果Xn是递减数列?
已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n
已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n
已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,猜想数列{X2n}的单调性,并证明你的结论
用单调有界数列收敛准则证明数列极限存在.(1)X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0)
设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限.