在[-3/4,正无穷)上是减函数
此时有√(1+x)>=1/2
所以对任意x1>x2>=-3/4
f(x1)-f(x2)
=√(1+x1)-x1-√(1+x2)+x2
=√(1+x1)-√(1+x2)-(x1-x2)
=√(1+x1)-√(1+x2)-[(1+x1)-(1+x2)]
=[√(1+x1)-√(1+x2)]-[√(1+x1)-√(1+x2)]*[√(1+x1)+√(1+x2)]
=[√(1+x1)-√(1+x2)][1-√(1+x1)-√(1+x2)]
在[-3/4,正无穷)上是减函数
此时有√(1+x)>=1/2
所以对任意x1>x2>=-3/4
f(x1)-f(x2)
=√(1+x1)-x1-√(1+x2)+x2
=√(1+x1)-√(1+x2)-(x1-x2)
=√(1+x1)-√(1+x2)-[(1+x1)-(1+x2)]
=[√(1+x1)-√(1+x2)]-[√(1+x1)-√(1+x2)]*[√(1+x1)+√(1+x2)]
=[√(1+x1)-√(1+x2)][1-√(1+x1)-√(1+x2)]