定义在(0,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(0,+∞)恒有f(2x)=2f(x)成立;(2)

1个回答

  • 解题思路:根据题中的条件得到函数的解析式为:f(x)=-x+2b,x∈(b,2b],又因为f(x)=k(x-1)的函数图象是过定点(1,0)的直线,再结合函数的图象根据题意求出参数的范围即可.

    因为对任意的x∈(0,+∞)恒有f(2x)=2f(x)成立,且当x∈(1,2]时,f(x)=2-x

    所以f(x)=-x+2b,x∈(b,2b].

    由题意得f(x)=k(x-1)的函数图象是过定点(1,0)的直线,

    如图所示红色的直线与线段AB相交即可(可以与B点重合但不能与A点重合)

    所以可得k的范围为

    4

    3≤k<2.

    同理作出(

    1

    16,

    1

    4]]的图象可得k的范围为−

    1

    7<k≤−

    1

    15.

    故选D.

    点评:

    本题考点: 根的存在性及根的个数判断.

    考点点评: 解决此类问题的关键是熟悉求函数解析式的方法以及函数的图象与函数的性质,数形结合思想是高中数学的一个重要数学数学,是解决数学问题的必备的解题工具.