解题思路:首先依题意求出函数h(x)的解析式,根据函数为偶函数,即h(x)=h(-x),求出m、n的关系式.同时根据h(1)=3,求出另一个m,n的关系式.进而求出m,n的值.代入解析式即可.
依题意h(x)=m f(x)+ng(x)=m(x2+x)+n(x+2)=mx2+mx+nx+2n
又h (x)为偶函数
则有h(x)=h(-x),即mx2+mx+nx+2n=mx2-mx-nx+2n
得出m+n=0
又h(1)=m+m+n+2n=3,即2m+3n=3
则有
m+n=0
2m+3n=3,解得m=-3,n=3
所以h(x)=mx2+mx+nx+2n=-3x2-3x+3x+6=-3x2+6
故答案为:-3x2+6
点评:
本题考点: 函数奇偶性的性质.
考点点评: 本题主要考查函数的奇偶性的运用.解题的关键是求出解析式中m和n的值.