(本题6分)已知:如图,△ ABC 是等边三角形, D 是 AB 边上的点,将 DB 绕点D顺时针旋转60°得到线段 D

1个回答

  • 小题1:(1)证明:如图,

    ∵线段 DB 顺时针旋转60°得线段 DE ,

    ∴∠ EDB =60°, DE = DB .

    ∵△ ABC 是等边三角形,

    ∴∠ B =∠ ACB =60°.

    ∴∠ EDB =∠ B .

    ∴ EF ∥ BC .····································· 1分

    ∴ DB = FC ,∠ ADF =∠ AFD =60°.

    ∴ DE=DB=FC ,∠ ADE =∠ DFC =120°,△ ADF 是等边三角形.

    ∴ AD=DF .

    ∴△ ADE ≌△ DFC .

    小题2:(2)由△ ADE ≌△ DFC ,

    得 AE = DC ,∠1 = ∠2.

    ∵ ED ∥ BC , EH ∥ DC ,

    ∴四边形 EHCD 是平行四边形.

    ∴ EH=DC ,∠3 = ∠4.

    ∴ AE=EH . ················································································· 3分

    ∴∠ AEH =∠1+∠3 = ∠2+∠4 = ∠ ACB =60°.

    ∴△ AEH 是等边三角形.

    ∴∠ AHE= 60°.

    小题3:(3)设 BH = x ,则 AC = BC = BH + HC = x +2,

    由(2)四边形 EHCD 是平行四边形,

    ∴ ED=HC .

    ∴ DE=DB=HC=FC =2.

    ∵ EH ∥ DC ,

    ∴△ BGH ∽△ BDC .······································································· 5分

    .即

    .

    解得

    .

    ∴ BC =3.