小题1:(1)证明:如图,
∵线段 DB 顺时针旋转60°得线段 DE ,
∴∠ EDB =60°, DE = DB .
∵△ ABC 是等边三角形,
∴∠ B =∠ ACB =60°.
∴∠ EDB =∠ B .
∴ EF ∥ BC .····································· 1分
∴ DB = FC ,∠ ADF =∠ AFD =60°.
∴ DE=DB=FC ,∠ ADE =∠ DFC =120°,△ ADF 是等边三角形.
∴ AD=DF .
∴△ ADE ≌△ DFC .
小题2:(2)由△ ADE ≌△ DFC ,
得 AE = DC ,∠1 = ∠2.
∵ ED ∥ BC , EH ∥ DC ,
∴四边形 EHCD 是平行四边形.
∴ EH=DC ,∠3 = ∠4.
∴ AE=EH . ················································································· 3分
∴∠ AEH =∠1+∠3 = ∠2+∠4 = ∠ ACB =60°.
∴△ AEH 是等边三角形.
∴∠ AHE= 60°.
小题3:(3)设 BH = x ,则 AC = BC = BH + HC = x +2,
由(2)四边形 EHCD 是平行四边形,
∴ ED=HC .
∴ DE=DB=HC=FC =2.
∵ EH ∥ DC ,
∴△ BGH ∽△ BDC .······································································· 5分
∴
.即
.
解得
.
∴ BC =3.
略