由题意可得:
集合A={x(|(a+1)^2-1/2*(a-1)^2≤x≤(a+1)^2+1/2*(a-1)^2}
要使A∩B=A,则:
2≤(a+1)^2-1/2*(a-1)^2
(a+1)^2+1/2*(a-1)^2≤3a+1
化简:
0≤a^2+6a-3
3a^2-4a+1≤0
解得:2根号3-3≤a≤1
所以存在实数a=[2根号3-3,1]
由题意可得:
集合A={x(|(a+1)^2-1/2*(a-1)^2≤x≤(a+1)^2+1/2*(a-1)^2}
要使A∩B=A,则:
2≤(a+1)^2-1/2*(a-1)^2
(a+1)^2+1/2*(a-1)^2≤3a+1
化简:
0≤a^2+6a-3
3a^2-4a+1≤0
解得:2根号3-3≤a≤1
所以存在实数a=[2根号3-3,1]