设f(x)连续,Y=∫0~X tf(x^2-t^2)dt 则dy/dx=?

2个回答

  • y = ∫[0,x] t f(x² - t²) dt

    令u = x² - t²,du = -2t dt

    当t = 0,u = x²;当t = x,u = 0

    y = ∫[x²,0] t f(u) * du/(-2t)

    = 1/2 ∫[0,x²] f(u) du

    dy/dx = 1/2 [2x * f(x²) - 0]

    = x f(x²)

    -------------------------------------------------------------------------------------

    楼上的方法也不错.

    令z² = x² - t²,2z dz = -2t dt => dt = -z/t dz

    当t = 0,z = x;当t = x,z = 0

    ∫[0,x] t f(x² - t²) dt

    = ∫[x,0] t f(z²) * (-z/t) dz

    = ∫[x,0] -z f(z²) dz

    = ∫[0,x] z f(z²) dz

    dy/dx = x f(x²) - 0

    = x f(x²)

    -------------------------------------------------------------------------------------

    两个方法也行,但楼上的替换怎么又会涉及因变量y呢?