f(0)f(1)=c(3a+b+c)>0
=>
c(3a-a-c+c)>0
=>
ac>0
1.
判别式=
4bb - 12ac
=4(-a-c)^2 - 12ac
=4(aa + cc - ac)
=4((a-c)^2 + ac)>0
2.
f(0)f(1)
=c*(3a+2b+c)
=(-a-b)(2a+b)>0
=>
(a+b)(2a+b)
f(0)f(1)=c(3a+b+c)>0
=>
c(3a-a-c+c)>0
=>
ac>0
1.
判别式=
4bb - 12ac
=4(-a-c)^2 - 12ac
=4(aa + cc - ac)
=4((a-c)^2 + ac)>0
2.
f(0)f(1)
=c*(3a+2b+c)
=(-a-b)(2a+b)>0
=>
(a+b)(2a+b)