1/x=(b²+1)/(2ab)
a/x=(b²+1)/2b
(a/x)²-1=(b^4+2b²+1)/(4b²)-1
=(b^4-2b²+1)/(4b²)
=(b²-1)²/(4b²)
[√(a+x)+√(a-x)]/[√(a+x)-√(a-x)]
=[√(a+x)+√(a-x)]²/[√(a+x)+√(a-x)][√(a+x)-√(a-x)]
=[a+x+2√(a²-x²)+a-x]/(a+x-a+x)
=[a+√(a²-x²)]/x
=(a/x)+√(a²-x²)/x
=(a/x)+√[(a²-x²)/x²]
=(a/x)+√[(a/x)²-1]
=(b²+1)/2b+√[(b²-1)²/(4b²)]
=(b²+1)/2b+|(b²-1)|/|2b|
b>0
所以
=(b²+1)/2b+|(b²-1)|/2b
0