●操作发现:①②③④
●数学思考:
答:MD=ME,MD⊥ME,
1、MD=ME;
如图2,分别取AB,AC的中点F,G,连接DF,MF,MG,EG,
∵M是BC的中点,
∴MF∥AC,MF= AC.
又∵EG是等腰Rt△AEC斜边上的中线,
∴EG⊥AC且EG= AC,
∴MF=EG.
同理可证DF=MG.
∵MF∥AC,
∴∠MFA+∠BAC=180°.
同理可得∠MGA+∠BAC=180°,
∴∠MFA=∠MGA.
又∵EG⊥AC,∴∠EGA=90°.
同理可得∠DFA=90°,
∴∠MFA+∠DFA=∠MGA=∠EGA,
即∠DFM=∠MEG,又MF=EG,DF=MG,
∴△DFM≌△MGE(SAS),
∴MD=ME.
2、MD⊥ME;
证法一:∵MG∥AB,
∴∠MFA+∠FMG=180°,
又∵△DFM≌△MGE,∴∠MEG=∠MDF.
∴∠MFA+∠FMD+∠DME+∠MDF=180°,
其中∠MFA+∠FMD+∠MDF=90°,
∴∠DME=90°.
即MD⊥ME;
证法二:如图2,MD与AB交于点H,
∵AB∥MG,
∴∠DHA=∠DMG,
又∵∠DHA=∠FDM+∠DFH,
即∠DHA=∠FDM+90°,
∵∠DMG=∠DME+∠GME,
∴∠DME=90°
即MD⊥ME;
●类比探究
答:等腰直角三解形
【考点解剖】 本题考查了轴对称、三角形中位线、平行四边形、直角三角形斜边上的中线等于斜边的一半、全等、角的转化等知识,能力要求很高.
【解题思路】 (1) 由图形的对称性易知①、②、③都正确,④∠DAB=∠DMB=45°也正确;(2)直觉告诉我们MD和ME是垂直且相等的关系,一般由全等证线段相等,受图1△DFM≌△MGE的启发,应想到取中点构造全等来证MD=ME,证MD⊥ME就是要证∠DME=90°,由△DFM≌△MGE得∠EMG=∠MDF,△DFM中四个角相加为180°,∠FMG可看成三个角的和,通过变形计算可得∠DME=90°. (3)只要结论,在(2)的基础易知为等腰直角三解形.