1-1/n²=(1+1/n)(1-1/n)
原式=(1-1/2)(1+1/2)(1-1/3)(1+1/3).(1-1/n)(1+1/n)
=(1/2)(3/2)(2/3)(4/3).[(n-1)/n][(n+1)/n]
=(1/2)[(n+1)/n]
=(n+1)/2n
(中间的前一项和后一项相乘抵消)
1-1/n²=(1+1/n)(1-1/n)
原式=(1-1/2)(1+1/2)(1-1/3)(1+1/3).(1-1/n)(1+1/n)
=(1/2)(3/2)(2/3)(4/3).[(n-1)/n][(n+1)/n]
=(1/2)[(n+1)/n]
=(n+1)/2n
(中间的前一项和后一项相乘抵消)