1、
f(x)=1/2*sin(2wx+2θ)+cos(2wx+2θ)
=√(1/4+1)sin(2wx+2θ+z)
tanz=1/(1/2)=2
T=2π/(2w)=2π
w=1/2
2、
f(x)=√(1/4+1)sin(x+2θ+z)
对称轴是x=0
sinx对称轴是x=kπ+π/2
把x=0代入
0+2θ+z=kπ+π/2
2θ=kπ+π/2-z
tan2θ=tan(kπ+π/2-z)=tan(π/2-z)=cotz=1/tanz=1/2
2tanθ/(1-tan²θ)=1/2
tan²θ+4tanθ-1=0
tanθ>0
所以tanθ=2+√5
θ=arctan(2+√5)