数列Sn=(3n+1)/2-(n/2)an

2个回答

  • Sn=(3n+1)/2-(n/2)an

    当n=1时,a1=4/3=1+1/3=1+1/[1*(1+2)]

    当n=2时,a2=13/12=1+1/[2*(1+2+3)

    当n=3时,a3=31/30=1+1/[3*(1+2+3+4)

    因此,可以猜想,an=1+2/[n(n+1)(n+2)]

    然后再用数学归纳法证明,因为方法很机械,但又太烦了,而且你也不需要详细,我就省略了.

    an-1=1+1/[n(n+1)(n+2)]-1=2/[n(n+1)(n+2)]

    1/(an-1)=n(n+1)(n+2)/2

    设数列bn=1/(an-1)=n(n+1)(n+2)/2

    n(n+1)(n+2) =1/2*[3!*C(n+2,3)]

    Sbn =1/2*[3!*C(n+2,3)]

    Sbn=1/2*{3!*[ C(3,3)+C(4,3)+C(5,3)+……+C(n+2,3)] }

    =3!*C(n+3,4) /2

    =3!(n+3)!/4!(n-1)!/2

    =(n+3)(n+2)(n+1)n/8

    tanAtanB=tanAtanC+tanBtanC

    sinA/cosA * sinB/cosB =sinA/cosA * sinC/cosC + sinB/cosB * sinC/cosC

    sinAsinBcosC=sinAsinCcosB+sinBsinCcosA

    根据正弦定理,a/sinA=b/sinB=c/sinC=2R

    代入,得

    sinA=a/(2R),sinB=b/(2R),sinC=c/(2R)

    abcosC/(4R^2)=accosB/(4R^2)+bccosA/(4R^2)

    abcosC=accosB+bccosA

    根据余弦定理,可得

    cosC=(a^2+b^2-c^2)/(2ab)

    cosA=(b^2+c^2-a^2)/(2bc)

    cosB=(a^2+c^2-b^2)/(2ac)

    代入,得

    ab(a^2+b^2-c^2)/(2ab)=ac(a^2+c^2-b^2)/(2ac)+bc(b^2+c^2-a^2)/(2bc)

    a^2+b^2-c^2=a^2+c^2-b^2+b^2+c^2-a^2

    a^2+b^2=3c^2

    (a^2+b^2)/c^2=3