证明:作AD垂直于BC交BC于D,因AB+AC,则BD=CD
且有
AB^2-AD^2=BD^2
AP^2-AD^2=PD^2
二式相减,有
AB^2-AP^2=BD^2-PD^2
=(BD+PD)*(BD-PD)
=(CD+PD)*(BP)
=CP*BP
证毕.
证明:作AD垂直于BC交BC于D,因AB+AC,则BD=CD
且有
AB^2-AD^2=BD^2
AP^2-AD^2=PD^2
二式相减,有
AB^2-AP^2=BD^2-PD^2
=(BD+PD)*(BD-PD)
=(CD+PD)*(BP)
=CP*BP
证毕.