设以P1P2为直径的园圆心为P,
抛物线准线l,
作P1Q1⊥l,垂足Q1,
P2Q2⊥l,垂足Q2,
PQ⊥l,垂足Q.
则PQ是直角梯形P1Q1Q2P2的中位线.
│PQ│=1/2(│P1Q1│+│P2Q2│)(中位线定理)
=1/2(│P1F│+│P2F│)(抛物线定义)
=1/2│P1P2│
=│PP1│=│PP2│.
∴Q,P1,P2三点共圆,
又PQ⊥l,
∴:以P1P2为直径的园与这抛物线的准线相切.
设以P1P2为直径的园圆心为P,
抛物线准线l,
作P1Q1⊥l,垂足Q1,
P2Q2⊥l,垂足Q2,
PQ⊥l,垂足Q.
则PQ是直角梯形P1Q1Q2P2的中位线.
│PQ│=1/2(│P1Q1│+│P2Q2│)(中位线定理)
=1/2(│P1F│+│P2F│)(抛物线定义)
=1/2│P1P2│
=│PP1│=│PP2│.
∴Q,P1,P2三点共圆,
又PQ⊥l,
∴:以P1P2为直径的园与这抛物线的准线相切.