解题思路:先利用同角三角函数的基本关系求得sinα和sin(α+β)的值,然后利用cosβ=cosp[(α+β)-α],根据两角和公式求得答案.
α,β均为锐角,
∴sinα=
1-
1
49=
4
3
7,sin(α+β)=
1- (
11
14)2=
5
3
14
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=[1/2].
故答案为[1/2]
点评:
本题考点: 两角和与差的余弦函数.
考点点评: 本题主要考查了两角和公式的化简求值和同角三角函数的基本关系的应用.熟练记忆三角函数的基本公式是解题的基础.