(1)设B(x,y)(y≠0) 则A(x,y+4).由AM=1/2 (AC+AB)知M时BC的中点,∴ C(-x,0) ,
又∠C=90°,∴AC⊥BC,∴AC●BC=0,
∴(-2x,-y-4)●(-2x,-y)=0,∴4x²+y²+4y=0,即x²+(y+2)²/4 =1
故动点M的轨迹方程为x²+(y+2)²/4 =1 (y≠0)
(2设直线L方程为x=k(y - 1/2)联立4x²+y²+4y=0,消去 x得,
(4k²+1)y²-(4k²-4)y+k²=0,⊿>0,设P(x1,y1),Q(x2,y2),
y1+y2=(4k²-4)/(4k²+1),y1y2= k²/(4k²+1)
∴x1x2= k²(y1-1/2)(y2-1/2)=12k²/(4k²+1)
由向量NP●NQ≥0得,x1x2+y1y2-a(y1+y2)+a²≥0,
∴12k²/(4k²+1)+k²/(4k²+1)-a(4k²-4)/(4k²+1)+a²≥0
以下略