请问概率论中的古典概型几何概型和离散型连续型这两对概念之间是什么关系?

1个回答

  • 你进入误区了:

    首先:古典概型是指各个事件出现可能性是相等的,没这个条件就不是古典概型,(如果一定要归类为离散或是联系,那么肯定要归为离散,但这是毫无意义的归类)

    其次:几何概型概型是指可以借助于几何知识解决的概率问题,比如面积比(这可能是这种)

    再次:离散型是指事件之间用数字表达后可以数的出来的,比如:1,2,3,4...等

    再次:连续型是指事件之间用数字表达后可以取到区间上一切实数的

    再次:伯努利没有所谓的第几种概型,只要理解该概率的意义就好了,但肯定的是研究离散随即变量的概率.