A(x1,y1),B(x2,y2)
y=a-x代入圆方程
x^2+(a-x)^2=4
2x^2-2ax+a^2-4=0
△=4a^2-8(a^2-4)>0
a^2<8
韦达定理x1+x2=a,x1x2=(a^2-4)/2
带入直线y1y2=(a^2-4)/2
OA·OB=x1x2+y1y2=(a^2-4)^2/4,a^2<8
A(x1,y1),B(x2,y2)
y=a-x代入圆方程
x^2+(a-x)^2=4
2x^2-2ax+a^2-4=0
△=4a^2-8(a^2-4)>0
a^2<8
韦达定理x1+x2=a,x1x2=(a^2-4)/2
带入直线y1y2=(a^2-4)/2
OA·OB=x1x2+y1y2=(a^2-4)^2/4,a^2<8