证明:当a>b>0时,(a-b)/a
1个回答
利用拉格郎日中值定理即可
ln(a/b)=(a-b)/ξ
相关问题
若a>0,b>0,且a+b=c证明:(1)当a>0时,a^r+b^r
证明当b>a>e时,a^b>b^a
1、填空 当A>0时,A+B________A.当A=0时,A+B————A.当A
指数函数证明若a>0,b>0,且a+b=c,求证:当r>1时,a^r+b^r
当a>0,b>0时,求证:a+b+1/ab大于或等于3 如何证明?
证明当b>a>e时,e为常数,求证:a^b>b^a
b是非0自然数,当a( )时a/b>1,当a( )时,a/b
用“” 或“=”填空当a>0,b>o时,|a+b|______|a|+|b|当a
当a乘0.2等于b;当b>0.2时,a()1,当a
用不等号填空1)当a>0时,b<0时,ab____0 .2)当a<0,b___0时,ab<0,3)当a>b时,ac^2_