1/(n*(n+1)(n+2))=﹛1/[n*(n+1)]-1/[(n+1)(n+2)]﹜/2=[1/n-2/(n+1)+1/(n+2)]/2
1/1*2*3+1/2*3*4+1/3*4*5+.+1/99*100*101
=1/2*(1-2*1/2+1/3+1/2-2*1/3+1/4+1/3-2*1/4+1/5+……+1/100+1/99-2*1/100+1/101)
=1/2*(1-1/2-1/100+1/101)
=5049/20200
1/(n*(n+1)(n+2))=﹛1/[n*(n+1)]-1/[(n+1)(n+2)]﹜/2=[1/n-2/(n+1)+1/(n+2)]/2
1/1*2*3+1/2*3*4+1/3*4*5+.+1/99*100*101
=1/2*(1-2*1/2+1/3+1/2-2*1/3+1/4+1/3-2*1/4+1/5+……+1/100+1/99-2*1/100+1/101)
=1/2*(1-1/2-1/100+1/101)
=5049/20200