∵-sin2x=sin(-2x)=cos(2x+π/2)=cos[2(x+π/4)]=1-2[sin(x+π/4)]^2
∴y=sin(x+π/4)-sin2x=sin(x+π/4)+1-2[sin(x+π/4)]^2
令t=sin(x+π/4),则
y=-2t^2+t+1,t∈[-1,1]
对称轴t=1/4,开口向下
∴ymax=y(t=1/4)=-1/8+1/4+1=9/8
ymin=y(t=-1)=-2-1+1=-2
故函数值域为[-2,9/8]
∵-sin2x=sin(-2x)=cos(2x+π/2)=cos[2(x+π/4)]=1-2[sin(x+π/4)]^2
∴y=sin(x+π/4)-sin2x=sin(x+π/4)+1-2[sin(x+π/4)]^2
令t=sin(x+π/4),则
y=-2t^2+t+1,t∈[-1,1]
对称轴t=1/4,开口向下
∴ymax=y(t=1/4)=-1/8+1/4+1=9/8
ymin=y(t=-1)=-2-1+1=-2
故函数值域为[-2,9/8]