如图点P在反比例函数y=4/x(x>0)上一点,PM⊥x轴于M点,交y=1/x于A点,PH⊥y轴于N点,交y=1/x于B

1个回答

  • (1)

    OM*AM=1

    OD*DB=1

    ∴S(OMAC)=S(ODBN)=1

    S(AMDH)=S(OMAC)-S(ODHC)

    =S(ODBN)-S(ODHC)

    =S(BNCH)

    (2)

    OA=OB

    OA²=OB²

    OM²+MA²=OD²+DB²

    (OM+MA)²=OM²+MA²+2OM*MA

    =OD²+DB²+2OD*DB

    =(OD+DB)²

    OM+MA=OD+DB

    同理

    (OM-MA)²=OM²+MA²-2OM*MA

    =OD²+DB²-2OD*DB

    =(OD-DB)²

    OM-MA=OD-DB

    因此OM=DB

    MA=OD

    PA=DB-AM

    =OM-OD

    =PB

    (3)

    设P(x0,y0)

    x0y0=4

    H(1/y0,1/x0)

    S(HDOC)=1/(x0y0)=1/4

    (4)

    k(CD)=-y0/x0

    A(x0,1/x0)

    B(y0,1/y0)

    k(AB)=(1/y0-1/x0)/(y0-x0)

    =-1/(x0y0)

    =-1/4是定值

    所以

    当P(1,4)时AB∥CD

    P取其它点时AB,CD相交.

    如仍有疑惑,欢迎追问.祝: